Magnon-mediated Dzyaloshinskii-Moriya torque in homogeneous ferromagnets

Aurélien Manchon,1,4* Papa Birame Ndiaye,1 Jung-Hwan Moon,2 Hyun-Woo Lee,3 and Kyung-Jin Lee2,4,†

1King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division, Thuwal 23955-6900, Saudi Arabia
2Department of Materials Science and Engineering, Korea University, Seoul 136-701, Korea
3PCTP and Department of Physics, Pohang University of Science and Technology, Kyungbuk 790-784, Korea
4KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-713, Korea

(Received 5 January 2014; revised manuscript received 14 November 2014; published 1 December 2014)

In this paper, we demonstrate that even in the absence of a magnetic texture, a magnon flow generates torques if magnons are subject to DMI just as an electron flow generates torques when submitted to Rashba interaction, even when the magnetization is homogeneous [8,9]. A direct consequence is the capability to tilt the magnetization direction of a homogeneous ferromagnet by applying a temperature gradient or a local rf field to generate the magnon flow (see Fig. 1). We show that merging the spin-orbit torques with spin caloritronics is rendered possible by the emergence of DMI in magnetic materials. The paper is organized as follows. The analytical derivation of the magnon-driven Dzyaloshinskii-Moriya torque (DM torque) is developed in Sec. II. The central results of this work are presented in Sec. III, where the analytical expressions are compared with micromagnetic simulations. Section IV addresses the nature of this torque when driven by thermal gradients. Finally, the conclusion and perspectives are provided in Sec. V.

II. ANALYTICAL DERIVATION OF THE DZIALOSHINSKII-MORIYA TORQUE

Our objective is to analytically derive the static response of a magnetic system in the presence of both DMI and spin waves. To do so, we provide a general discussion on the response of a
magnetic system submitted to a harmonic excitation, without assuming any specific form of the magnetic energy landscape, within the nonlinear spin-wave formalism (Sec. II A). This formalism is then applied to the specific case of DM torque (Sec. II B).

A. Nonlinear spin-wave analysis

1. General considerations

Let us first consider the case of a magnetization \(\mathbf{m} \) subject to a harmonic excitation with frequency \(\omega \) (such as spin waves or a time-dependent magnetic field). The magnetization \(\mathbf{m} \) may be Fourier-expanded as follows:

\[
\mathbf{m} = \mathbf{m}_0 + (\mathbf{m}_1 e^{i\omega t} + \mathbf{m}_1^* e^{-i\omega t}) + (\mathbf{m}_2 e^{2i\omega t} + \mathbf{m}_2^* e^{-2i\omega t}) + \mathcal{O}(\text{excitation amplitude})^3, \tag{1}
\]

where \(\mathbf{m}_0 = \mathbf{m}_0(x) \equiv \langle \mathbf{m} \rangle \) denotes the time-independent magnetization profile and may slightly differ from the equilibrium profile due to the nonequilibrium correction arising from the nonlinear effect of the harmonic excitation. This excitation-induced correction is the central quantity that we aim to calculate. The spatial profile of the spin-wave amplitude. Then, the linearization of the Landau-Lifshitz-Gilbert (LLG) equation fulfills the constraints of micromagnetics. It is conventional to describe the magnetization direction using either the Cartesian coordinates \([\text{Fig. 2(a)}]\) or the spherical coordinates system \([\text{Fig. 2(b)}]\). In the present work, we need to explicitly separate the time-independent part from the time-dependent part of the magnetization. In other words, we need to make an explicit average over an oscillation period \(T = 2\pi/\omega \).

The terms \(\mathbf{m}_n = \mathbf{m}_n(x), n \geq 1 \) are the Fourier components of the magnetization in time space, \(\mathbf{m}_1 \) representing the linear response of the system to the excitation, while \(\mathbf{m}_{n>1} \) amounts to the nonlinear response of the system. Note that all the time-independent nonlinear responses are absorbed in \(\mathbf{m}_0 \). In the case of spin-wave excitations, \(\mathbf{m}_1(x) \) describes the spatial profile of the spin-wave amplitude. Then, the linearization of the Landau-Lifshitz-Gilbert (LLG) equation fixes \(\mathbf{m}_1 \) up to its overall magnitude, which is nothing but the spin-wave amplitude (see below). On the other hand, \(\mathbf{m}_2 = \mathbf{m}_2(x) \) and the nonequilibrium correction part of \(\mathbf{m}_0 \) are of the order of (spin-wave amplitude)\(^2\) and describe the leading nonlinear corrections to the spin-wave profile when the spin-wave amplitude is not infinitesimally small. The \(2\omega \) and nonequilibrium \(0 \) frequency components are of the order of (spin-wave amplitude)\(^3\) because the squares of the first-order terms appear when the dynamics equations are expanded up to the second order. Since the first-order terms have frequency \(\omega \), their squares generate \(2\omega \) and \(0 \) frequency components, the latter being absorbed in the definition of \(\mathbf{m}_0 \). In Eq. (1), \(\mathbf{m}_0 \) is real whereas \(\mathbf{m}_1 \) and \(\mathbf{m}_2 \) are complex in general. Note that both sides of Eq. (1) are real.

The micromagnetic normalization condition \(\mathbf{m} \cdot \mathbf{m} = 1 \) (2) imposes constraints on \(\mathbf{m}_0, \mathbf{m}_1, \) and \(\mathbf{m}_2 \). To extract these constraints, we expand Eq. (2) by using Eq. (1), up to the second order in spin-wave amplitude only. Analyzing the various Fourier components of the normalization condition gives the following set of equations:

\[
\begin{align*}
\mathbf{m}_0 \cdot \mathbf{m}_0 &= 1 - 2 m_1^* \cdot m_1, \\
\mathbf{m}_1 \cdot \mathbf{m}_0 &= m_1^* \cdot m_0 = 0, \\
2 m_2 \cdot \mathbf{m}_0 &= -m_1 \cdot m_1, \\
2 m_1^* \cdot m_2 &= -m_1^* \cdot m_1.
\end{align*}
\tag{3}
\]

Equation (3) indicates that the magnitude of the time-independent magnetization \(\langle \mathbf{m} \rangle^2 = m_0^2 \) is reduced below 1 due to the presence of spin waves (as expected from standard nonlinear spin-wave theory). Equation (4) states that \(\mathbf{m}_1 \) is orthogonal to \(\mathbf{m}_0 \), and Eqs. (5) and (6) show that the components of the second-order term \(\mathbf{m}_2 \) parallel to \(\mathbf{m}_0 \) are completely fixed by the normalization condition (2) once the first-order term \(\mathbf{m}_1 \) is fixed. But the components perpendicular to \(\mathbf{m}_0 \) are free from Eq. (2) and subject only to the LLG equation.

2. Choice of an appropriate system of coordinates

In order to model the impact of a flow of spin waves on the static direction of the magnetization \(\mathbf{m}_0 = \langle \mathbf{m} \rangle \), we need to adopt an appropriate system of coordinates that fulfills the constraints of micromagnetics. It is conventional to describe the magnetization direction using either the Cartesian [Fig. 2(a)] or the spherical coordinates system [Fig. 2(b)]. In the present work, we need to explicitly separate the time-independent part from the time-dependent part of the magnetization. In other words, we need to make an explicit...

3. From Landau-Lifshitz-Gilbert to Euler equations

The LLG equation describing the dynamics of the system reads \(\dot{\mathbf{m}} = \gamma \mathbf{m} \times \dot{\mathbf{m}} W + \alpha \mathbf{m} \times \dot{\mathbf{m}} W \), where \(W \) is given in Eq. (17). Our objective is to determine the direction of the static magnetization under the influence of a flow of spin waves. To do so, we explicitly rewrite the LLG equation in terms of the spatial derivatives \(\partial_r \theta, \partial_r \phi, \partial_r^2 \theta, \partial_r^2 \phi \). The two independent components (along \(\mathbf{e}_\theta \) and \(\mathbf{e}_\phi \)) of the LLG equation adopt the general form

\[
\partial_t s_\theta + \alpha (s_\theta \partial_t s_\phi - s_\phi \partial_t s_\theta) = T^{(1)}_\theta + T^{(2)}_\theta + \cdots, \tag{10}
\]

\[
\partial_t s_\phi - \alpha (s_\theta \partial_t s_\phi - s_\phi \partial_t s_\theta) = T^{(1)}_\phi + T^{(2)}_\phi + \cdots, \tag{11}
\]

where \(T^{(i)}_\theta \) are the \(i \)th order components (in spin-wave amplitude) of the term \(\gamma \mathbf{m} \times \partial_t W \) in the LLG equation. Since \(\langle T^{(1)}_\theta \rangle = \langle s_\theta \rangle \neq 0 \), it is clear that, up to the second order in spin-wave amplitude, the time averaging over one period of oscillation leads to

\[
\langle T^{(2)}_\theta \rangle = \alpha \langle s_\theta \partial_t s_\phi - s_\phi \partial_t s_\theta \rangle = O(\text{excitation amplitude})^4, \tag{12}
\]

\[
\langle T^{(2)}_\phi \rangle = -\alpha \langle s_\theta \partial_t s_\phi - s_\phi \partial_t s_\theta \rangle = O(\text{excitation amplitude})^4. \tag{13}
\]

Indeed, since only time-dependent components of \(s_\phi \) can couple with \(s_\theta \) or \(s_\phi \) to generate nonvanishing time-averaged values and since \(s_\phi \) is time dependent only at the second order in excitation amplitude and above [see Eq. (7)], then the right-hand side of Eqs. (12) and (13) is nonzero only at the fourth order at least, and can therefore be neglected. The set of equations that determines the spatial profile of the static magnetization direction \((\theta, \phi)\) is

\[
\langle T^{(2)}_\theta \rangle = 0, \quad \langle T^{(2)}_\phi \rangle = 0. \tag{14}
\]

Explicit expressions of Eq. (14) in terms of \(\theta, \phi, s_r, s_\theta, \) and \(s_\phi \) are given in Sec. II B.

As will be explicitly shown below, Eq. (14) allows for the determination of \(\theta \) and \(\phi \) once \(s_r, s_\theta, \) and \(s_\phi \) are determined only up to the linear order in spin-wave amplitude. This simplifies the calculation considerably. To the linear order in spin-wave amplitude, \(s_r \approx 1 \) and the linear equation of motion of the spin wave is then expressed in the form

\[
\partial_t s_\theta + \alpha \partial_t s_\phi = T^{(1)}_\theta, \tag{15}
\]

\[
\partial_t s_\phi - \alpha \partial_t s_\theta = T^{(1)}_\phi, \tag{16}
\]

that can be solved easily. The explicit expressions of Eqs. (14)–(16) being quite cumbersome in the general case, we only present below the solution when the magnetization initially lies along the longitudinal in-plane easy axis (\(x \) axis). The cases when the easy axis is in-plane transverse (\(y \) axis) or perpendicular to the plane (\(z \) axis) are treated in the Appendix.

B. Magnetization deviations induced by the spin waves

Let us consider a thin magnetic film with a magnetization \(\mathbf{m} \) aligned along the in-plane easy axis (\(x \) axis) and subjected to an external ac magnetic field applied locally to make spin waves propagate along the \(x \) axis, as displayed in Fig. 1. In this system, the magnetic energy reads

\[
W = A \sum_i (\partial_i \mathbf{m})^2 - D \mathbf{m} \cdot [(\mathbf{z} \times \nabla) \times \mathbf{m}] + 2\pi M_s^2 (\mathbf{m} \cdot \mathbf{z})^2 - K (\mathbf{m} \cdot \mathbf{x})^2, \tag{17}
\]
where the last two terms are the symmetric exchange (A) and antisymmetric Dzyaloshinskii-Moriya (D) exchange energies, the last two terms are the demagnetizing (2πM²) and the in-plane anisotropy (K) energies, and V = (δₓ, δᵧ, δẑ). The form of the DMI we adopt here is derived for a cylindrically symmetric system with an interfacial inversion asymmetry along the normal z [13,15]. All along the present study, we consider that the DMI is smaller than a certain threshold value Dc ≈ 2/A(K + 2πM²), so that the uniformly magnetized state is energetically stable [29].

We assume that the magnetization is mostly oriented along the easy axis ±x. Then θ → π/2 − δ and φ → φ + (0, π) where δ, φ ≪ 1, so that sin θ ≈ 1, cos θ ≈ δ, and sin φ ≈ ηφ, cos φ ≈ η. Here, η = ±1 when the magnetization is along ±x. Since the linear effect of spin wave does not modify the equilibrium values of θ and φ, and θ and φ are of the second order in spin-wave amplitude at best. Up to the second order in spin-wave amplitude, the time-averaged LLG equation reduces to γ(m · ∂/∂t)m = 0 [see Eq. (14)]. When expanded, the vector components of this equation become

\[s_x^2 + s_y^2\partial_x^2\phi + (s_x s_y^2 + s_y s_x^2)\partial_x = 2(s_x \partial_x s_y)\partial_x \delta \]

\[= \frac{1}{\lambda^2} (s_x^2 - s_y^2\partial_y^2\phi + \eta \partial_x^* (s_x \partial_x s_y)), \quad (18) \]

\[s_y^2 + s_x^2\partial_x^2\delta + (s_x s_y^2 + s_y s_x^2)\partial_x = 2(s_y \partial_x s_y)\partial_x \delta \]

\[= \frac{1}{\lambda^2} (s_y^2 - s_x^2\partial_y^2\delta - \eta \partial_x^* (s_y \partial_x s_y)), \quad (19) \]

where \(\lambda^2 = J/H_k \), \(\lambda^2 = J/(H_k + H_d) \) and \(\partial_x^* = D^* / J \), with \(J = 2A/M_r \). By considering \(s_x^2 = 1 - (s_y^2 + s_y^2) \), Eqs. (18) and (19) become

\[(1 - (s_y^2))\partial_x^2\phi - 2(s_y \partial_x s_y)\partial_x \phi + (s_x \partial_x s_y)\partial_x \delta \]

\[= \frac{1}{\lambda^2} (1 - (s_y^2) - (s_y^2))\phi + \eta \partial_x^* (s_x \partial_x s_y), \quad (20) \]

\[(1 - (s_y^2))\partial_x^2\delta - 2(s_y \partial_x s_y)\partial_x \delta + (s_x \partial_x s_y)\partial_x \phi \]

\[= \frac{1}{\lambda^2} (1 - (2s_y^2) - (s_y^2))\delta + \eta \partial_x^* (s_y \partial_x s_y). \quad (21) \]

These equations involve four types of terms: a second-order derivative of the angle (diffusionlike), a first-order derivative (wave-like), an anisotropy term, and a DMI term. We show below that this last term, proportional to the spin-wave flow \((s_x \partial_x s_y, \partial_x) \), makes \(\phi \) and \(\delta \) nonvanishing, and drives the time-independent components of the magnetization out of its rest position. In order to obtain a solvable equation, it is useful to count the order of each term in Eqs. (20) and (21). Considering that \(s_x \) and \(s_y \) are of the first order in the spin-wave amplitude, and \(\phi \) and \(\delta \) are of the second order in the spin-wave amplitude, one finds that only a few terms need to be retained for analysis up to the second order in the spin-wave amplitude.

For the sake of clarity, we now switch to the Cartesian coordinate system through the relation \(\Delta m_x \equiv (s_x) \sin \theta \sin \phi \approx \eta \phi \) and \(\Delta m_y \equiv (s_y) \cos \theta \approx \delta \), where \(\Delta m_{x,y} \) represent the time-averaged deviation of the magnetization induced by the flow of spin waves along the y and z axes. Those retained terms become

\[\partial_x^2 \Delta m_x - \frac{1}{\lambda^2} \Delta m_x = D^* (s_x \partial_x s_y), \quad (22) \]

\[\partial_y^2 \Delta m_z - \frac{1}{\lambda^2} \Delta m_z = -\eta \partial_x^* (s_y \partial_x s_y), \quad (23) \]

where we neglected higher orders in spin-wave amplitude \((s_x^2, s_x s_y, s_y^2) \) since the source term [right-hand side of Eqs. (22) and (23)] is already second order in \(s_x \). In order to evaluate \(\Delta m_x \) and \(\Delta m_z \), from these equations, it is sufficient to determine \(s_x \) and \(s_y \) only up to the linear order in the spin-wave amplitude. For the latter, one just needs to deal with the linearized equations of motion of the spin wave [i.e., Eqs. (15) and (16)], which explicitly read

\[\partial_t s_x + \alpha \partial_x s_y = \gamma J \partial_x^2 s_y - \gamma H_k s_y, \quad (24) \]

\[\partial_t s_y - \alpha \partial_x s_x = -\gamma J \partial_y^2 s_x + \gamma (H_k + H_d) s_y. \quad (25) \]

The solution is a spatially damped spin wave of the form

\[s_x = s_0 e^{-|x|/\Lambda} \cos (qx - \omega t), \quad (26) \]

\[s_y = s_0 e^{-|x|/\Lambda} \sin (qx - \omega t), \quad \Lambda = \gamma J q / \omega_0, \quad (27) \]

\[\omega = \gamma (q^2 + H_k + H_d)(q^2 + H_k). \]

The absolute value \(|x| \) ensures that the spin wave vanishes away from the source, taken at \(x = 0 \). Now, by inserting Eqs. (26) and (27) into Eqs. (22) and (23), and taking the time average over a spin-wave precession period (i.e., \((s_x \partial_x s_y) = -\frac{\text{sgn}(x)}{\Lambda^2} (s_0^2) e^{-|x|/\Lambda} \) and \((s_y \partial_x s_y) = -\frac{\text{sgn}(x)}{\Lambda^2} q s_0^2 s_y^2 e^{-|x|/\Lambda} \)), we can track the impact of this damped spin wave on the deviations \(\Delta m_{x,z} \). Considering that the right-hand sides of Eqs. (22) and (23) are odd functions of \(x \), \(\Delta m_{x,z} \) should vanish at \(x = 0 \). Combined with the boundary condition, \(\Delta m_{x,z} \mid_{x \rightarrow \infty} = 0 \), one finds that

\[\Delta m_x = -\text{sgn}(x) \frac{H_{\text{eff}}}{H_k} \frac{\Lambda^2}{\Lambda^2 - \lambda^2} (1 - e^{-|x|/\Lambda^2}), \quad (28) \]

\[\Delta m_z = \eta \text{sgn}(x) \frac{H_{\text{eff}}}{H_k + H_d} \frac{\Lambda^2}{\Lambda^2 - \lambda^2} (1 - e^{-|x|/\Lambda^2}), \quad (29) \]

where \(H_{\text{eff}}^D = D^* s_0^2 s_y^2 e^{-|x|/\Lambda} /2 \) and \(H_{\text{eff}}^D = D^* s_0^2 s_y^2 e^{-|x|/\Lambda} /4 \Lambda \) and \(\lambda^2 = \lambda^2 \). Note that \(\Delta m_{x,z} \) are proportional to \(D \) and (spin-wave amplitude)², implying that these static magnetization deviations are consistent with the existence of effective magnetic fields along \(y \) and \(z \) directions, thus torques, generated by the magnon flow and the DMI. Considering that \(\mathbf{m} \approx \eta \mathbf{x} \), the two field directions may be represented as \(\mathbf{y} \times \mathbf{x} \), consistently with the absence (presence) of the factor \(\eta \) in Eq. (28) [Eq. (29)]. The generated DM fieldlike torque (FLT) \(\propto \mathbf{m} \times \mathbf{y} \) and DM dampinglike torque (DLT) \(\propto \mathbf{m} \times (\mathbf{y} \times \mathbf{m}) \) are in complete analogy with the Rashba torque [8,9]. Note also that \(\Delta m_{x,z} \) are proportional to \(\text{sgn}(x) \), implying that in the two regions, \(x > 0 \) and \(x < 0 \), where the spin wave propagates in the opposite directions, the effective field signs are opposite. Thus the vectors \(\mathbf{y} \) and \(\mathbf{y} \times \mathbf{m} \).
for the fields actually amount to \(z \times \mathbf{j}_m \) and \((z \times \mathbf{j}_m) \times \mathbf{m} \), respectively, where \(\mathbf{j}_m \) is the spin-wave current.

We emphasize that the torques derived above are obtained after time-averaging. Hence, the torques result in a static reorientation of the magnetization precession axis. Consequently, the present analysis does not preclude the emergence of any other DMI-induced mechanisms that could affect the overall magnetization dynamics (and therefore impact the motion of domain walls, for instance).

III. MICROMAGNETIC SIMULATIONS

To get further insights into the impact of propagating spin waves on the otherwise spatially homogeneous background magnetization, we now show micromagnetic simulation results for a semi-one-dimensional system (i.e., the system is discretized along the length direction with the unit cell size of 4 nm—total length of 16 \(\mu \text{m} \)—but not along the width or the thickness direction). We solve the LLG equation with the magnetic energy functional given in Eq. (17). We define the gyromagnetic ratio \(\gamma = 1.76 \times 10^7 \text{ Oe}^{-1} \text{s}^{-1} \), the saturation magnetization \(M_s = 800 \text{ emu/cm}^3 \), the exchange stiffness constant \(A = 1.3 \times 10^{-6} \text{ erg/cm} \), and vary the easy axis anisotropy field \(H_{\text{k}} \), the demagnetization field along the thickness direction \(H_d \), and the damping constant \(\alpha \). To excite spin waves, we apply an ac field \(H_{\text{ac}} \cos(2\pi ft)/y \) to two unit cells at the center of the model system \((x = 0) \) where \(H_{\text{ac}} = 100 \text{ Oe} \). This choice of the localized ac field is consistent with the situation assumed for Eqs. (28) and (29). We consider the absorbing boundary condition [31,32] at the system edges to suppress spin-wave reflection.

Figure 3(a) shows the spatial distribution of the transverse projection of the magnetization direction \(m_y \) for different DMI coefficients \(D \). For \(D = 0 \), the spatial distribution of \(m_y \) is symmetric with respect to the spin-wave source \((x = 0) \) and described by \(m_y \approx 0 + s_y(x) \cos(|x| - \omega t) \), where “0” represents the \(y \) component of the background magnetization and the spin-wave amplitude \(s_y(x) \) decays with growing \(|x|\) due to damping. For \(D \neq 0 \), on the other hand, the distribution acquires an antisymmetric component \(\Delta m_y(x) \) with respect to \(x = 0 \) and \(m_y \approx \Delta m_y(x) + s_y(x) \cos(|x| - \omega t) \), according to Fig. 3(a). Thus the propagating spin wave modifies the \(y \) component of the background magnetization from 0 to a nonzero time-averaged value \(\Delta m_y(x) \), which is shown in Fig. 3(b) for a background magnetization initially lying along \(+x\). Reversing the direction of the background magnetization along \(-x\) does not change the sign of \(\Delta m_y \) (not shown). Thus the simulation result for \(\Delta m_y \) is qualitatively consistent with the vector expression \(-z \times \mathbf{j}_m \) obtained from Eq. (28). For a quantitative comparison, Fig. 3(b) shows the deviation \(\Delta m_y \) for various values of \(\alpha \), where symbols are numerical results and lines are obtained from Eq. (28). When \(s_y^0 \) and \(s_y^D \) in \(H^\text{DMI}_\text{eff} \) are determined from the numerical simulation result at \(x = 0 \), the analytical expression reproduces the numerical results very well for the entire range of \(x \).

Another intriguing observation is the emergence of the DM-DLT \([\mathbf{m} \times (\mathbf{y} \times \mathbf{m})]\) that induces an out-of-plane deviation \(\Delta m_z \). Figure 3(c) shows the spatial distribution of \(\Delta m_z \) for different \(\alpha \) when the magnetization is initially aligned along \(+x\). For clarity, we assume \(H_d = 0 \) to make \(\lambda_d \) and \(\Delta m_z \) larger. The numerical results (open symbols) are in good agreement with Eq. (29) (solid lines) and \(\Delta m_z \) consistently changes sign with the magnetization direction (not shown). As demonstrated by Fig. 3(c) and Eq. (29), the DM-DLT is proportional to the damping constant \(\alpha \) (since \(\Delta m_z \approx 1/\alpha \)), which echoes the nonadiabatic correction to the electronic-spin torque in the presence of spin-flip relaxation, as proposed by Zhang et al. in magnetic textures and spin valves [33]. In metallic systems, the spin relaxation modifies the spin dynamics of the itinerant electrons which results in an additional torque component of the form \(-\beta \mathbf{m} \times \tau\), where \(\tau \) is the torque in the absence of spin relaxation and \(\beta \) is proportional to the spin-relaxation rate [33]. The same effect is at the origin of the nonadiabatic torque in electron-driven and magnon-driven magnetic excitations: the magnetic damping \(\alpha \) not only attenuates the spin-wave current, but also relaxes the spin polarization carried by the spin waves producing the additional dampinglike torque proportional to \(H^\text{DMI}_\text{eff} \). As a result, the overall magnitude of \(\Delta m_z \) vanishes in the limit of zero damping.

![Figure 3](https://example.com/figure3.png)
and (31), respectively. (b) The magnetization tilting \(\Delta m_y \) and \(\Delta m_z \) with \(\alpha = 0 \). Symbols and lines are obtained from numerical simulation and Eqs. (30) and (31), respectively. (b) \(\Delta m_y \) and \(\Delta m_z \) obtained with \(\alpha = 0.01 \), \(H_k = 5 \text{ Oe} \), \(H_{ax} = 100 \text{ Oe} \), \(H_d = 10023 \text{ Oe} \), \(D = 1.5 \text{ erg/cm}^2 \), and \(f = 0.8 \text{ GHz} \). The magnitude of the deviation is about 1%.

In order to further demonstrate the distinctive role of spin-wave flow and spin-wave relaxation on the two components of the DM torque, we consider the reaction of an undamped magnetic system to the spin-wave flow in the vanishing small deviation is induced by the spin-wave relaxation. In contrast, \(\psi_m \) reaches about 1.1 Oe. This tilt can be detected by either an electrical or optical (Kerr effect) way, after averaging the results are in agreement with Eqs. (30) and (31), which proves experimentally. We performed numerical simulation with the DM-DLT term.

In Fig. 1 of Ref. [34], the effective field corresponding to the dampinglike torque is about 1.1 Oe. We also note that Ref. [35] shows a MOKE sensitivity of 60 nanorad (see Fig. 2 of Ref. [35]). These works indicate that the deviations predicted in the present work should be detectable experimentally.

IV. THERMALLY INDUCED DZYALOSHINSKII-MORIYA TORQUE

A. Analogy with a two-dimensional Rashba gas

So far we have discussed the effect of the spin wave \(\psi_m = \psi_{m+y} + \psi_{m+z} \) on \(\Delta m_{y,z} \). Still further insight can be gained by considering the effect of \(\Delta m_{y,z} \) on \(\psi_m \). For this, we go beyond the linearized LLG equation and introduce to Eqs. (24) and (25) the lowest-order coupling terms between \(\Delta m_{y,z} \) and \(\psi_m \), which are linear to both \(\Delta m_{y,z} \) and \(\psi_m \). In the short-wavelength regime, where the exchange and DM interactions dominate over the anisotropy, the resulting equations fall into the following form of the effective Schrödinger equation:

\[
i\hbar \partial_t \psi_m = \hat{H}_m \psi_m = \left(\frac{\hat{p}^2}{2m^*} + \frac{\alpha_{DM}}{\hbar} \hat{p} \cdot (\mathbf{z} \times \mathbf{m}) \right) \psi_m, \tag{32}\]

where \(\hat{p} = -i\hbar \mathbf{V} \) is the momentum operator, \(m^* = hM_s/4\gamma A \) is the magnon mass, and \(\alpha_{DM}/\hbar = 2\gamma D/M_s \) is the Dzyaloshinskii-Moriya velocity for the spin waves. This equation instructively resembles Schrödinger’s equation of an itinerant electron spin in a homogeneous magnetic two-dimensional electron gas in the presence of Rashba spin-orbit coupling [7].

\[
i\hbar \partial_t \psi_e = \left(\frac{\hat{p}^2}{2m} + \frac{\alpha_R}{\hbar} \hat{p} \cdot \mathbf{z} + J_{ex} \mathbf{m} \cdot \mathbf{\sigma} \right) \psi_e, \tag{33}\]

where \(\alpha_R \) is the Rashba spin-orbit coupling and \(J_{ex} \) is the s-d exchange between itinerant electron spins \(\mathbf{\sigma} \) and the local moments aligned along \(\mathbf{m} \). Equations (32) and (33) differ by the presence of the s-d exchange term. Indeed, in contrast with electron spins, the magnon spin is by definition aligned along the local magnetization direction and its wave function \(\psi_m \) is not a two-component spinor. Nevertheless, their similarity implies that properties of the Rashba system, such as current-induced Rashba field (also called inverse spin galvanic effect) of the form [8]

\[
\mathbf{H}_R = -\alpha_R \mathbf{m} \times \mathbf{j}/hM_s, \tag{34}\]

where \(\mathbf{j} \) is the flowing spin current, are at least partly enabled by the presence of DMI in magnonic systems. The propagating spin wave and background magnetization \(\mathbf{m} \) interact through the energy term \(\langle \sigma_{DM}/h \rangle \langle \hat{p} \rangle_m \cdot (\mathbf{z} \times \mathbf{m}) \), where \(\langle \ldots \rangle_m \) denotes the quantum average on the magnon state \(\psi_m \). This interaction term yields a torque of the form

\[
\mathbf{T}_{FL} = \gamma \mathbf{m} \times \partial_m (\hat{H}_m) = \mathbf{m} \times \left(\frac{\alpha_{DM}}{\hbar} \mathbf{z} \times \langle \hat{p} \rangle_m \right). \tag{34}\]

The expression within the brackets \(\langle \ldots \rangle \) is nothing but the effective field of the DM-FLT, \(\mathbf{H}_{DMF} \), and \(\langle \hat{p} \rangle_m \) amounts to the spin-wave current. The DM-DLT can be obtained qualitatively by considering the correction due to the damping on the spin-wave dynamics [see Eqs. (24) and (25)]. In a Landau-Lifshitz approach, the magnetic damping corrects the torque by adding a contribution of the form \(\gamma \alpha_R \mathbf{m} \times (\mathbf{m} \times \mathbf{H}_{DMF}) \) that produces the DM-DLT term.

B. Thermally driven Dzyaloshinskii-Moriya torque

We next discuss the DM torque arising from the flow of magnons generated by a thermal gradient. The spin-wave flow generated by rf field has two major drawbacks: (i) the wavelength \(2\pi/q \) of the spin wave is rather large (74 nm in the
present study) producing a very small effective field \([H_{\text{DOM}}^{\text{eff}} < 0.1 \text{ Oe in Fig. 4(b)}]\) and (ii) the magnon flow (hence, the DM torque) vanishes away from the rf source over the attenuation length \(\Lambda\). Therefore, thermal magnons driven by a uniform temperature gradient, \(VT\), are interesting candidates for the proposed effect. Indeed, they possess a shorter wavelength and can be maintained over the region where the thermal gradient is applied. Following Eq. (34), these magnons exert a torque of the form \(T_{\text{Fl}}^{\text{th}} = \langle \alpha_{\text{DM}} m_i^* / h M_s \rangle \mathbf{m} \times (\mathbf{z} \times \mathbf{j}_m)\) on the magnetization, where \(\mathbf{j}_m\) is the magnon flow and can be estimated using a phenomenological Boltzmann equation [36],

\[
\mathbf{j}_m = -\frac{k_B T}{2\pi a} \left[\int_{-T/2}^{T/2} \left(e^x dx \right) \left(e^{x^2} - 1 \right)^2 \right] x.
\]

To evaluate the amount of magnonic current flowing through the system, we choose reasonable parameters for YIG as found in the literature [22,37]: \(\alpha = 10^{-5}\), \(V \approx 1.9 \text{ nm}^3\), \(K \approx 2 \times 10^6 \text{ erg/cm}^3\), \(T_c = 550 \text{ K}\), \(T = 300 \text{ K}\), and \(\alpha, T = 20 \text{ K/mm}\). Under these conditions, for a 1-nm-thick magnetic slab, the flow of magnons is \(j_m \approx 2.29 \times 10^{-2} \text{ s}^{-1} \text{ cm}^{-1}\), two orders of magnitude smaller than the usual critical switching particle current in conventional spin-transfer torque configuration (\(\approx 10^{22} \text{ s}^{-1} \text{ cm}^{-2}\)). The effective magnetic field generated by this magnon flow is \(H_{\text{Fl}} = hD / (2AM_s) j_m \approx 1.7 \text{ Oe}\), which is at least one order of magnitude larger than the effective field obtained from rf spin waves in this work. This conservative estimation leaves plenty of room for improvement such as (i) increasing the temperature gradient, (ii) reducing the magnetization damping, (iii) decreasing the magnetic anisotropy, and (iv) increasing the DMI.

C. Simulations with a temperature gradient

We performed numerical simulations with a uniform temperature gradient by including the thermal fluctuation fields, i.e., the Gaussian-distributed random fluctuation fields \(h(t)\) (\(\langle h(t) \rangle = 0\), \(\langle h_i(t) h_j(t + \delta t) \rangle = 2\alpha k_B T / (\gamma M_s V \delta t) \delta_{ij}\), where \(i, j\) are the Cartesian coordinates) and the unit-cell volume, and \(\delta t\) is the integration time step [38]). We assume \(\alpha = 0.1\), \(H_k = 500 \text{ Oe}\), \(H_d = 0 \text{ Oe}\), the nanowire width of 100 nm, and \(\delta t = 0.025 \text{ K/nm}\). \(T\) is set to be zero at \(x = 0\) and increases with \(x\). For simplicity, we ignored the temperature dependence of other magnetic parameters and also their temperature-dependent renormalization [39]. As a result, the magnitude of the effect reported below should be regarded only as an order of magnitude estimation. Figures 5(a) and 5(b) show the time-averaged \(m_x\) and \(m_z\) components with varying \(D\). The averaged magnetization components fluctuate around “0” for \(D = 0\), whereas they fluctuate around clearly nonzero value for nonzero \(D\). Figures 5(c) and 5(d) are histograms corresponding to Figs. 5(a) and 5(b), respectively, which show the finite magnetization tiltings induced by the temperature gradient. The effective field generated by the thermally induced DM torque is \(H_{\text{DOM}}^{\text{th}} \equiv H_k \Delta m_{ij} \approx 0.25 \text{ Oe}\).

V. DISCUSSION AND CONCLUSION

In this paper, we demonstrated that Dzyaloshinskii-Moriya interaction mediated by spin waves can generate a torque on a homogeneous magnetization that resembles the Rashba torque, its electronic counterpart, displaying both fieldlike and dampinglike components. The torque is expected to be much more efficient in the case of a magnon flow driven by a thermal gradient than for a standard rf-excited spin wave. It is important to stress that our results are not limited to systems displaying interfacial DMI but can be also extended to materials accommodating bulk DMI since the energy functional needs only to display an antisymmetric exchange term \(\sum_{ij} D_{ij} S_i \times S_j\), such as in pyrochlore crystals [27], chiral magnets [40], and multiferroics [41].

The recent realization of a magnonic transistor based on a magnetic insulator has confirmed the ability of spin waves for low energy consuming logic operations [42]. Since the information process does not require charge currents nor electric voltages, it is expected to reduce the energy losses due to Joule heating. The present work builds up a bridge between spin-orbit transport, magnonics, and spin caloritronics and extends the properties of spin waves to systems without inversion symmetry. This mechanism enables the magnonic control of the magnetization direction in ferromagnets without the use of charge currents or electrical voltages and is expected to be detectable in systems ranging from thin magnetic bilayers to bulk noncentrosymmetric crystals. It therefore opens promising avenues in the development of chargeless information technology.

ACKNOWLEDGMENTS

The authors acknowledge fruitful discussions with M. D. Stiles and K. W. Kim. A.M. and P.B.N. were supported by the King Abdullah University of Science and Technology (KAUST). K.J.L. was supported by NRF (Grant No. 2013R1A2A01013188). H.W.L. was supported by NRF (Grants No. NRF-2013R1A2A05006237 and No. 2011-0030046).
that \(\sin \theta \approx 1 \), \(\cos \theta \approx \delta \) and \(\sin \phi \approx \eta \), \(\cos \phi \approx \eta \phi \) (\(\eta = \pm 1 \)). Again \(\delta \) and \(\phi \) are of the second order in spin-wave amplitude. Following the same procedure as above, and defining \(\Delta m_x = \eta \phi \), \(\Delta m_y = \delta \), we obtain up to the second order in spin-wave amplitude

\[
\partial_t^2 \Delta m_x - D^* \partial_t \Delta m_x - \frac{1}{\lambda^2} \Delta m_y = 0, \quad (A2)
\]

\[
\partial_t^2 \Delta m_y + D^* \partial_t \Delta m_y - \frac{1}{\lambda^2} \Delta m_z = 0. \quad (A3)
\]

Note that the source terms are absent on the right-hand side of Eqs. (A2) and (A3) unlike in Eqs. (22) and (23) for the in-plane longitudinal anisotropy case. The absence of the source terms implies that the DM torque vanishes up to the second order in spin-wave amplitude. This vanishing is actually consistent with the vector expressions of the DM torque presented in the main text; the fieldlike DM torque is proportional to \(\mathbf{m} \times \mathbf{y} \) and the dampinglike DM torque is proportional to \(\mathbf{m} \times (\mathbf{y} \times \mathbf{m}) \), both of which vanish in the in-plane transverse anisotropy case since \(\mathbf{m} \) is essentially aligned along the \(\mathbf{y} \) direction.

2. Perpendicular anisotropy

In this case, \(K_x = 0 \), \(K_y = 0 \) and \(K_z = -K_z \) and the perpendicular anisotropy field is \(H_L = 2K_z / M_s \). We assume that the magnetization is mostly oriented along the easy axis \(\eta \mathbf{z} \), so \(\theta \ll 1 \) and \(\sin \theta \approx \eta \theta \), \(\cos \theta \approx \eta \). Here \(\theta \) is of the second order in spin-wave amplitude. In this case, the deviations are defined as \(\Delta m_x = \eta \theta \cos \phi \) and \(\Delta m_y = \eta \theta \sin \phi \). The equations are quite lengthy, but if one assumes a circular precession of the spin wave, i.e., \(\psi_0 = \psi_0 \phi \), the following relations are fulfilled:

\[
\langle s^2_\theta \rangle = \langle s^2_\phi \rangle, \quad \langle s_\theta \partial_\theta s_\theta \rangle = \langle s_\phi \partial_\phi s_\phi \rangle, \quad \langle s_\phi \partial_\theta s_\phi \rangle = -\langle s_\theta \partial_\phi s_\theta \rangle,
\]

and then, it is possible to obtain the nonlinear equation describing the spatial profile of the deviations,

\[
\partial_t^2 \Delta m_x - \frac{1}{\lambda^2} \Delta m_x = -\eta \tilde{D}^* \langle s_\theta \partial_\theta s_\theta \rangle, \quad (A4)
\]

\[
\partial_t^2 \Delta m_y - \frac{1}{\lambda^2} \Delta m_y = -\tilde{D}^* \langle s_\phi \partial_\phi s_\phi \rangle, \quad (A5)
\]

where \(\lambda^2 = J / H_L \). Note that Eqs. (A4) and (A5) are essentially identical to Eqs. (22) and (23) for the in-plane longitudinal anisotropy case. Combined also with the result for the in-plane transverse anisotropy case, one finds that for all three types of the considered anisotropies, the DM torque can be expressed as a sum of the fieldlike torque \(\propto (\mathbf{m} \times \mathbf{y}) \) and the dampinglike torque \(\propto (\mathbf{m} \times (\mathbf{y} \times \mathbf{m})) \).

APPENDIX

In this Appendix, we analytically derive the DM torque in the case of in-plane transverse anisotropy (i.e., along the \(y \) direction) and perpendicular anisotropy (i.e., along the \(z \) direction). Let us start by generalizing our approach and consider a one-dimensional magnetic system described by the following energy functional:

\[
W = A \sum_i (\partial_i \mathbf{m})^2 - D \mathbf{m} \cdot [(\mathbf{x} \times \nabla) \times \mathbf{m}] + \sum_i K_i (\mathbf{m} \cdot \mathbf{e}_i)^2, \quad (A1)
\]

where the first term is the symmetric exchange energy \((A) \) and the second term is the antisymmetric Dzyaloshinskii-Moriya exchange energy \((D) \). The last term \((K_i) \) is a general anisotropy term that accounts for the magnetic anisotropy and demagnetizing energy along the three Cartesian directions \(\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z \). More explicitly, Fig. 6 provides the actual values of \(K_i \) in the case of in-plane longitudinal anisotropy, in-plane transverse anisotropy, and perpendicular anisotropy.

The case of in-plane longitudinal anisotropy is treated in the main text. In this case, \(K_x = -K \), \(K_y = 0 \), and \(K_z = 2\pi M^2_z = K_d \). We here treat the two remaining cases of in-plane transverse anisotropy and perpendicular anisotropy.

1. In-plane transverse anisotropy

In this case, \(K_x = 0 \), \(K_y = -K \), and \(K_z = 2\pi M^2_z = K_d \). We assume that the magnetization is mostly oriented along the easy axis \(\pm y \), \((\theta, \phi) \rightarrow (\pi / 2 - \delta, \eta \pi / 2 - \phi) \) where \(\delta, \phi \ll 1 \), so

\[
\begin{array}{|c|c|c|c|}
\hline
\text{In-plane} & -K & 0 & 2\pi M^2_z \\
\hline
\text{Transverse} & 0 & -K & 2\pi M^2_z \\
\hline
\text{Perpendicular} & 0 & 0 & -K + 2\pi M^2_z \\
\hline
\end{array}
\]

\[
\text{FIG. 6. (Color online) (Top panel) Three magnetic configurations investigated in this work and their corresponding anisotropy energy constants. At rest (i.e., in the absence of magnon flow), the magnetization is assumed to be aligned either along the easy axis, which is } x \text{ (in-plane longitudinal anisotropy), } y \text{ (in-plane transverse anisotropy), or } z \text{ (perpendicular anisotropy). (Bottom panel) The table provides the values of anisotropy constants for the three cases depicted above.}
\]