2014

Spin Transfer Torque Generated by the Topological Insulator Bi2Se3

Spin Transfer Torque Generated by the Topological Insulator Bi2Se3
A.R. Mellnik, J.S. Lee, A. Richardella, J.L. Grab, P.J. Mintun, M.H. Fischer, A. Vaezi, A. Manchon, E.-A. Kim, N. Samarth, and D.C. Ralph
Nature 511, 449 (2014)

​​

A.R. Mellnik, J.S. Lee, A. Richardella, J.L. Grab, P.J. Mintun, M.H. Fischer, A. Vaezi, A. Manchon, E.-A. Kim, N. Samarth, D.C. Ralph
.
2014
​Magnetic devices are a leading contender for implementing memory and logic technologies that are nonvolatile, that can scale to high density and high speed, and that do not suffer wear-out. However, widespread applications of magnetic memory and logic devices will require the development of efficient mechanisms for reorienting their magnetization using the least possible current and power. There has been considerable recent progress in this effort, in particular discoveries that spin-orbit interactions in heavy metal/ferromagnet bilayers can yield strong current-driven torques on the magnetic layer, via the spin Hall effect in the heavy metal or the Rashba-Edelstein effect in the ferromagnet. As part of the search for materials to provide even more efficient spinorbit-induced torques, some proposals have suggested topological insulators (TIs), which possess a surface state in which the effects of spin-orbit coupling are maximal in the sense that an electron’s spin orientation is locked relative to its propagation direction. Here we report experiments showing that charge current flowing in-plane in a thin film of the TI Bi2Se3 at room temperature can indeed apply a strong spin-transfer torque to an adjacent ferromagnetic permalloy (Py = Ni81Fe19) thin film, with a direction consistent with that expected from the topological surface state. We find that the strength of the torque per unit charge current density in the Bi2Se3 is greater than for any other spin-torque source material measured to date, even for non-ideal TI films wherein the surface states coexist with bulk conduction. Our data suggest that TIs have potential to enable very efficient electrical manipulation of magnetic materials at room temperature for memory and logic applications.