2016

Enhanced non-adiabaticity in vortex cores due to the emergent Hall effect

Enhanced non-adiabaticity in vortex cores due to the emergent Hall effect
A. Bisig, C. A. Akosa, J.-H. Moon, J. Rhensius, C. Moutafis, A. von Bieren, J. Heidler, G. Kiliani, M. Kammerer, M. Curcic, M. Weigand, T. Tyliszczak, B. Van Waeyenberge, H. Stoll, G. Schutz, K.-J. Lee, A. Manchon, and M. Klaui
Phys. Rev. Lett. 117, 277203 (2016)​​​
A. Bisig, C.A. Akosa, J.-H. Moon, J. Rhensius, C. Moutafis, A. von Bieren, J. Heidler, G. Kiliani, M. Kammerer, M. Curcic, M. Weigand, T. Tyliszczak, B. Van Waeyenberge, H. Stoll, G. Schutz, K.-J. Lee, A. Manchon, M. Klaui
.
2016
​We present a combined theoretical and experimental study, investigating the origin of the enhanced nonadiabaticity of magnetic vortex cores. Scanning transmission x-ray microscopy is used to image the vortex core gyration dynamically to measure the nonadiabaticity with high precision, including a high confidence upper bound. We show theoretically, that the large nonadiabaticity parameter observed experimentally can be explained by the presence of local spin currents arising from a texture induced emergent Hall effect. This study demonstrates that the magnetic damping α and nonadiabaticity parameter β are very sensitive to the topology of the magnetic textures, resulting in an enhanced ratio (β/α > 1) in magnetic vortex cores or Skyrmions.​