2019

Interface-based tuning of Rashba spin-orbit interaction in asymmetric oxide heterostructures with 3d electrons

​Interface-based tuning of Rashba spin-orbit interaction in asymmetric oxide heterostructures with 3d electrons,
W. Lin, L. Li, F. Dogan, C. Li, H. Rotella, X. Yu, B. Zhang, Y. Li, W.S. Lew, S. Wang, W. Prellier, S. Pennycook, J. Chen, Z. Zhong, A. Manchon and T. Wu
Nat. Commun. 10 (1), 3052 (2019)
W. Lin, L. Li, F. Dogan, C. Li, H. Rotella, X. Yu, B. Zhang, Y. Li, W.S. Lew, S. Wang, W. Prellier, S. Pennycook, J. Chen, Z. Zhong, A. Manchon, T. Wu
.
2019
The Rashba effect plays important roles in emerging quantum materials physics and potential spintronic applications, entailing both the spin orbit interaction (SOI) and broken inversion symmetry. In this work, we devise asymmetric oxide heterostructures of LaAlO3//SrTiO3/LaAlO3 (LAO//STO/LAO) to study the Rashba effect in STO with an initial centrosymmetric structure, and broken inversion symmetry is created by the inequivalent bottom and top interfaces due to their opposite polar discontinuities. Furthermore, we report the observation of a transition from the cubic Rashba effect to the coexistence of linear and cubic Rashba effects in the oxide heterostructures, which is controlled by the filling of Ti orbitals. Such asymmetric oxide heterostructures with initially centrosymmetric materials provide a general strategy for tuning the Rashba SOI in artificial quantum materials.